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Lots of data: water
samples, CYAN,
qPCR...etc
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Lots of data: water
samples, CYAN,
qPCR...etc
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Then we use math and

algorithms, but...
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What's The Real Problem?

We collect a lot of data, we develop a lot of models... but howdo we
make the data we have actionable? - -~
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Can we stop HABs once they've started?

BRITA:.' PITCHER FILTER

Leading in ultrasonic algae

control
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Challenges

Our algorithms focus on forecasting HAB occurrence These are
the major challenges we've faced:
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Challenges

Our algorithms focus on forecastlng HAB occurrence These are
the major chaHenges we've faced:

Ecosystem

Unigueness

(no general
solution
possible)

A'“

Differential
Sampling
(data rich vs
data poor)

Ecosystem
Connectivity
(open vs
closed
systems)

Temperature change in the last 50 years

+f""

2011-2020 average vs 1951-1980 baseline
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Timescales
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Solutions

We have beendevelopingCyberinfrastlruCtu.re'andas‘uite o
data modeling tools that help address these HAB challenges:

@ Detroit Lake Water Quaity Prediction System orecsst s asourd Theproeet O Cyano Index Bloom Predicted Probability for December 2018
" with +2C Increase In Temperature

o
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Machine ,

Learning  Analytics

Weather & Stream Data

Weather and stream data collected continuously from the Detroit Ranger Station are shown

50°N

below. Select different data and times on the right.
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40°N

Data Lake

35°N

Wind speed (m/s)

@ .
=3 Wind Speed
c
Relative Humidity
— Solar Radiation

30°N

On-premises Real-time Data
Data Movement Movement

25°N

120°W 110°W 100°W 90°W 80°W 70°W

Operational ‘ Seasonal and ‘ Next Gen Cloud

(Detroit Lake) Climate sensitivity Analytics Infrastructure
- (CYAN)
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Operational Forecasts

Detroit Lake: Bayesian Model Averaging framework applied to
the in situ data collected from the lake to provide daily 1-week
and 2-week forecasts of cyanobacteria and toxin concentrations
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Operational Forecasts

Detroit Lake: Bayesian Model Averaging framework applied to
the in situ data collected from the lake to provide daily 1-week
and 2-week forecasts of cyanobacteria and toxin concentrations

Ecological Applications, 19(7), 2009, pp. 1805—-1814
© 2009 by the Ecological Society of America

Bayesian model averaging for harmful algal bloom prediction

2
GrANT HAMILTON,** Ross McViNisH,”> AND KERRIE MENGERSEN®

' School of Natural Resource Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001 Australia
*Mathematics Department, The University of Queensland, Brisbane, Queensland 4072 Australia
3School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001 Australia

We expanded the Bayesian Model ,
Averaging approach to include neural nets
in addition to linear and non-linear functions

Based on empirical
samples
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the in situ data collected from the lake to provide daily 1-week
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@ Detroit Lake Water Quality Prediction System

Ecological Applications, 19(7), 2009, pp. 1805—-1814
© 2009 by the Ecological Society of America

Weather & Stream Data

Bayesian model averaging for harmful algal bloom prediction
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We expanded the Bayesian Model ,
Averaging approach to include neural nets
in addition to linear and non-linear functions

Based on empirical
samples

Operationa
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Last 30 Days

Air Temperature
Precipitation

Wind Speed

[J Solar Radiation
Air Temperature
— Precipitation

Relative Humidity

Dashboard

Detroit Lake)

U




Long-term Forecasts |

In addition to operational forecasts (1-2 week t|mes'c‘a|es) we
have been developing seasonal (6 month) and decada\

forecasts (e.g. 2030, 2050 2100)
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In addition to operational forecasts (' —2'w.ée_k tlimescaies), W >
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Long-term Forecasts

In addition to operatlona\ forec:asts (1 -2 week ’umescales) we
have been developing seasonal (6 month) and decadal

forecasts (e.g. 2030, 2050 2100)

Differences In Predicted Probabllity with a
+2C Temperature Increase In June

Hidden

01 Apr 2021 - 21 Apr 2021
1 Apr 2021

50°N

45°N

40°N

35°N

30°N
Machine learning
modeling

25°N

120°W 110°W 100°W 90°W 80°W

CYAN national data ' PRISI\/I (OSU) downscaled
weather/climate data



Long-term Forecasts

In addition to operatlona\ forecasts (1 -2 Week ’umescales) we
have been developing seasonal (6 month) and decada\
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Long-term Forecasts

In addition to operational forecasts (1-2 week t{imescales) we
have been developing seasonal (6 month) and decada\
forecasts (e.g. 2030, 2050 2100) |

Long-range weather forecasts
| &) NATIONAL WEATHER SERVICE

HOME FORECAST PAST WEATHER SAFETY INFORMATION EDUCATION NEWS SEARCH ABOUT

Hidden

Local forecast by Severe Storms Possible in the South; Southwest Critical Fire Weather Threats

City, St" or ZIP cod
Severe storms with large to very large hail, damaging winds, a couple of tornadoes, and heavy rain that could cause flash flooding
may develop across the eastern South Plains to the Deep South. Dry, gusty winds in the Southwest will keep fire weather threats

Location Help critical. Elevated fire weather threats also in portions of the East. Cool and snowy in the Northern Tier states and West mountains.
Read More >

Machine learning
modeling
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HOME FORECAST PAST WEATHER SAFETY INFORMATION EDUCATION NEWS SEARCH ABOUT

Hidden

Local forecas t by Severe Storms Possible in the South; Southwest Critical Fire Weather Threats

City, St" or ZIP cod
E Severe storms with large to very large hail, damaging winds, a couple of tornadoes, and heavy rain that could cause flash flooding
may develop across the eastern South Plains to the Deep South. Dry, gusty winds in the Southwest will keep fire weather threats

Location Help critical. Elevated fire weather threats also in portions of the East. Cool and snowy in the Northern Tier states and West mountains.

Read More >

World Climate
Machine learning

modeling

A About WCRP « Core Projects Unifying Themes v Grand Challenges v Initiatives & Activities v Events v |

CMIP6 Climate Projections
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Next Gen: Hybrid Machine Learning

Purely data drlven machine \earmng (e.g. our BayeS|an I\/Iode\ Averaging,
or Neural Nets, or Random Forests) do not exphmtly respect the laws of

physics or biology.

But, hybrid machine learning models do. Case study - this year!
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Next Gen: Interpretable Al

Machine learning (e.g. neural nets) offer accurate predictions, but you
don’t know what's going on under the hood. Interpretab\e Alis a clags
of machine learning that people can understand e

i The Learning Boundary
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Next Gen Interpretable AI

Machine Iearnlng (e g. neural nets) otfer accurate predlctlons but you
don't know what's going on under the hood. Interpretable Al is a class
of machine Iearn|ng that people can understand '

Black box Hidden \ =2 Glass bex s it summer?

Decision
Tree

neural
network

Low winds?

High HAB prob Low HAB prob

i The Learning Boundary

Low HAB prob
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Next Gen: Transfer Learning

Water quahty modehng suffers from the ”
problem (i.e. its not a big data prob\em

-

.

.

lots of small data”
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Next Gen: Transfer Learning
Waterquallty mddehng suﬁers from the bté Q‘f 's‘mallld'ata”_" |
problem (i.e. |ts not a blg data prob\em | e " -

Real-time

Real-time
Data

Data

Little
Historical
Data

Lots of
Historical
Data

U




Cloud Data Infrastructure

It's not just about modeling though. We're learning how
important it is to have a unified, standardized and acceSS|b|e
(via API) database: AWS Data Lake + database

&0
o0000

Machine ,

Learning  Analytics

@ Halifax Water
Halifax, NS, Canada

Joint Water Commission @,
Tualatin Valley Water District 8 C2ckamas River Water Provider

@ City of Salem
Medford Water Commission @

@ City of Minneapolis

Central Lake Cou ty
Joint Action Water Agency @
Central Utah Water
Conservanc y District

@ City of Aurora

Data Lake

Oklahoma Water , ,
Los Angeles Depa rtm it SantaFe ® Resources Board @ Grand River Dam Authority
® |t Water and Powe s
@) City of Norman
o . Central Oklahoma Master Conservancy District
On-premises Real-time Data City of Wichita Falls @
Data Movement Movement @ Tarrant Regional Water District
Unified, standardized ;
® SA Water . Tampa Bay Water @
D a.t a L a k e a n d Adelaide, SA, Australia Manatee County @
: Lee County ®

database |
Collaborators in a 2021 Water Research Foundation

project to develop a national water quality database for

application to transfer learning
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Conclusions: Measurable Usefulness

In Summary:

In sum, collectively we are doing really well monitoring and

modeling our environments. | think the next steps are: - Multimodal data

| . et o synthesis and open
1) synthesize all available data in a standardized database access
(Cyan, water samples, gPCR, cubesatimagery, USGS... etc etc) - Models: interpretable

. | , 4 Al and transtfer
2) developing metrics by which we can measure the impact of earning

our monitoring efforts and modeling. : Drediﬁtlions‘da(tjwezk”yf
| monthly and decada

timescales

- Measurable impacts
.

Y L Ake multi-scaled GeOSpatiaI and temporal database

Publicly accessible lake water quality and ecological context data for the US

University of Michigan
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